An optimal first-order primal-dual gap reduction framework for constrained convex optimization

نویسندگان

  • Quoc Tran-Dinh
  • Volkan Cevher
چکیده

We introduce an analysis framework for constructing optimal first-order primal-dual methods for the prototypical constrained convex optimization template. While this class of methods offers scalability advantages in obtaining numerical solutions, they have the disadvantage of producing sequences that are only approximately feasible to the problem constraints. As a result, it is theoretically challenging to compare the efficiency of different methods. To this end, we rigorously prove in the worst-case that the convergence of primal objective residual in first-order primal-dual algorithms must compete with their constraint feasibility convergence, and mathematically summarize this fundamental trade-off. We then provide a heuristic-free analysis recipe for constructing optimal first-order primal-dual algorithms that can obtain a desirable trade-off between the primal objective residual and feasibility gap and whose iteration convergence rates cannot be improved. Our technique obtains a smoothed estimate of the primal-dual gap and drives the smoothness parameters to zero while simultaneously minimizing the smoothed gap using problem first-order oracles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained convex minimization via model-based excessive gap

We introduce a model-based excessive gap technique to analyze first-order primaldual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented...

متن کامل

A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov’s excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual...

متن کامل

A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science

We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in [M. Zhu, and T. F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, UCLA CAM Report [08-34], May 2008] to a broader class of convex optimization problems. In addition, we survey several closely related methods and explain the connections to PDHG. We point out...

متن کامل

Primal-Dual Extragradient Methods for Nonlinear Nonsmooth PDE-Constrained Optimization

We study the extension of the Chambolle–Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant provided one part of the functional i...

متن کامل

Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization

In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms are able to compute second-order stationary solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015